

 Document Number Revision Prepared By Approved By
 APN0020 1.1 NGB NB

 Title Page

 Writing to Modbus Devices 1 of 10

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this docu ment. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

WRITING TO MODBUS DEVICES

1. Introduction
Senquip devices can read and write to externally connected Modbus devices. Setup of reads is simply achieved using

the Modbus settings on the device setup page. Writing to devices is done within a script.

This application note discusses how to perform Modbus writes from within a script. It is assumed that the user has

Admin privileges and scripting rights for the device being worked on. To request scripting rights, contact

support@senquip.com.

2. References
The following documents were used in compiling this Application Note.

Reference Document Document Number

A Modbus Register Addressing Modbus Register Addressing, Continental Control Systems

B Modbus 101 – Introduction to Modbus Modbus 101 - Introduction to Modbus, Control Solutions, Minnesota

C Modbus Modbus, Wikipedia

MOD_RSsim was used as a slave simulator in preparing this application note.

Figure 1 - MOD_RSsim Simulation Software

mailto:support@senquip.com
https://docs.senquip.com/scripting_guide/index.html
https://ctlsys.com/support/modbus-register-addressing/
https://www.csimn.com/CSI_pages/Modbus101.html
https://en.wikipedia.org/wiki/Modbus
http://modrssim.sourceforge.net/

 Document Number Revision Prepared By Approved By
 APN0020 1.1 NGB NB

 Title Page

 Writing to Modbus Devices 2 of 10

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this docu ment. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

3. Background
Modbus is an industrial protocol standard that was created by Modicon, now Schneider Electric, in the late 1970’s

for communication among programmable logic controllers (PLCs). Modbus remains the most widely available

protocol for connecting industrial devices. The Modbus protocol specification is openly published, and use of the

protocol is royalty-free.

The Modbus protocol is defined as a master/slave protocol, meaning a device operating as a master will poll one or

more devices operating as slaves. A slave device cannot volunteer information; it must wait to be asked for it. The

master will write data to a slave device’s registers and read data from a slave device’s registers. A register address is

always in the context of the slave’s registers. Senquip devices are always the master.

The most used form of Modbus protocol is RTU over RS-485. Data is transmitted in 8-bit bytes, one bit at a time, at

baud rates ranging from 1200 bits per second (baud) to 115200 bits per second.

A master's query consists of a slave address, a function code defining the requested action, any required data, and

an error checking field. A slave's response consists of fields confirming the action taken, any data to be returned,

and an error checking field.

Device Address Function Code Data Checksum

1 byte 1 byte N x bytes 2 bytes
Figure 2 - Modbus RTU Message Frame

The most used function codes are shown in Table 1 .

Function Code Function Size Access

0x01 =01 Read coil 8 bits Read

0x02 = 02 Read discrete 8 bits

16 bits
 bits

Read only

0x03 = 03 Read unsigned holding 16 bits Read

0x04 = 04 Read unsigned input 16 bits Read only

0x05 = 05 Write coil 8 bits Write

0x06 = 06 Write unsigned holding 16 bits Write

Table 1 - Function Codes

An example of a Modbus unsigned holding register read from register 5 of a slave device with address 1, and the

response, is shown below. Two byte fields are always sent Most Significant Byte (MSB) first and Least Significant Byte

(LSB) second.

Device Address Function Code Data Checksum

 Register Address Number of Registers

1 byte 1 byte 2 bytes 2 bytes 2 bytes

0x01 0x04 0x00 (MSB) 0x05 (LSB) 0x00 (MSB) 0x01 (LSB) 0x21 (MSB) 0xCB (LSB)
Figure 3 - Read Request

 Document Number Revision Prepared By Approved By
 APN0020 1.1 NGB NB

 Title Page

 Writing to Modbus Devices 3 of 10

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this docu ment. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

Device Address Function Code Data Checksum

 Number of Bytes to Follow Register Value

1 byte 1 byte 1 bytes 2 bytes 2 bytes

0x01 0x04 0x02 0x00 (MSB) 0x09 (LSB) 0x79 (MSB) 0x36 (LSB)
Figure 4 - Response to Read Request

MOD_RSsim includes a window that allows you to see the incoming messages and responses from the simulator.

Figure 5 - MOD_RSsim Message Viewer

Modbus RTU mode includes an error–checking field which is based on a Cyclical Redundancy Check (CRC) performed

on the message contents. The CRC field checks the contents of the entire message. It is applied regardless of any

parity checking method used for the individual characters of the message. The CRC field contains a 16–bit value

implemented as two 8–bit bytes. The CRC field is appended to the message as the last field in the message. When

this is done, the low–order byte of the field is appended first, followed by the high–order byte. Senquip provides a

function to calculate the CRC that is documented in the Senquip Scripting Guide.

4. Modbus Specification vs Convention
Modbus register addressing can be confusing because of differences between the Modbus specification and

common convention. When working with Modbus, the datasheets need to be read carefully, and ultimately

experimentation is required to see what each slave requires for specifying register addresses.

https://docs.senquip.com/scripting_guide/chapters/reference.html#senquip:~:text=SQ.crc(data%2C%20length%2C%20algorithm_id)

 Document Number Revision Prepared By Approved By
 APN0020 1.1 NGB NB

 Title Page

 Writing to Modbus Devices 4 of 10

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this docu ment. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

4.1. Function Code Prefix
It is a common convention (but not mentioned in the specifications) to describe a register address with a leading

digit to indicate the Modbus function code required to access the register. This results in a format like the following:

XNNNN

Where “X” is one of the following Modbus function codes. For example, if you see a Modbus register number 41221,

this is really register number 1221 and should be accessed using the Modbus function 04 “Read unsigned Input”.

4.2. Zero vs One Based Numbering
The Modbus specification says that registers are addressed starting at zero. Therefore, input registers numbered 1-

16 are addressed as 0-15. Unfortunately, that means a register documented with an address of 1221 must be

requested by sending an address of 1220 (04C4 hex).

To make things worse, this is not always the case, sometimes register 1 should be addressed at address 0 and

sometimes at address 1.

5. Hardware Setup and Device Configuration
A Senquip ORB-C1 was connected to a computer running MOD_RSsim as a Modbus simulator. In this case, RS232

was used with the serial peripheral being placed in MODBUS mode.

Figure 6 - Hardware Setup

The serial port is configured for RS232 with a baud rate of 19200, 8 data bits, no parity, and 1 stop bit.

 Document Number Revision Prepared By Approved By
 APN0020 1.1 NGB NB

 Title Page

 Writing to Modbus Devices 5 of 10

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this docu ment. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

Modbus reads are set to timeout if no response is received after 0.5 seconds. A minimum delay of 15 milliseconds is

set between a response arriving and the next Modbus read. Although the Modbus standard sets the minimum as 3.5

character periods, we find that many Modbus sensors need a longer time between reads.

A base interval of 10 seconds for the device was selected.

Figure 7 - Serial Peripheral Setup

Modbus 1 was configured to read an unsigned input from slave address 1, register 5.

Figure 8 - Modbus 1 Setup

 Document Number Revision Prepared By Approved By
 APN0020 1.1 NGB NB

 Title Page

 Writing to Modbus Devices 6 of 10

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this docu ment. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

MOD_RSsim is configured to have address 1 and register 5 is given the value 5. Serial port settings are set to match

the Senquip serial peripheral.

It is confirmed that the Senquip Portal is reading a value of 5 on the Modbus 1 peripheral.

Figure 10 - Modbus 1 Peripheral on Senquip Portal

Figure 9 – MOD_RSsim setup

 Document Number Revision Prepared By Approved By
 APN0020 1.1 NGB NB

 Title Page

 Writing to Modbus Devices 7 of 10

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this docu ment. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

6. Writing to a Modbus Peripheral
A script will be used to write to a Modbus register. The script is given in Appendix 1 and will be described below. For

more information on scripting for Senquip devices, see the Senquip Scripting Guide.

The standard structure of a Modbus message is given in Figure 2. A Modus message to write to a 16-bit register will

have a function code of 6, and will specify the register to be written to, and the data to be written. Specifically, to

write the value 55 (37 hex) to register 7, the required message is shown in Figure 11.

Device Address Function Code Data Checksum

 Register Address Data to be Written

1 byte 1 byte 2 bytes 2 bytes 2 bytes

0x01 0x06 0x00 (MSB) 0x07 (LSB) 0x00 (MSB) 0x37 (LSB) 0x79 (MSB) 0xDD (LSB)
Figure 11 - Writing 55 to Register 7 of Device 1

First, libraries used in the script need to be loaded.

A function, sendVal, which writes an unsigned 16-bit number to a holding register is created. SendVal takes as input,

an object containing the address and register of the Modbus slave device and the data to be written. It creates a

Modbus write message, and initiates a serial write to execute the register update.

The function converts the decimal slave address that has been passed to it, to a string representation of a 1 byte

hexadecimal number using the encode function. The encode function convers a number into a string representation

using the number type specified. Similarly, the slave register address and data to be sent are encoded into strings

representing 2 byte hexadecimal numbers.

The first part of the Modbus write message is assembled by adding the address, function code 6, the register to be

written, and the value to write. A checksum for this data is calculated using the Senquip CRC function and is

appended as a 16-bit string representation. Note how the byte order in the CRC is swapped by placing a minus in

https://docs.senquip.com/scripting_guide/

 Document Number Revision Prepared By Approved By
 APN0020 1.1 NGB NB

 Title Page

 Writing to Modbus Devices 8 of 10

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this docu ment. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

front of the number type in the encode function. The swapping of the bytes is required because the SQ.crc function

returns the data LSB first, and the Modbus standard requires the data to be sent MSB first. The CRC is appended to

complete the Modbus message.

Finally, the function initiates a serial write to serial port 1.

The sendVal function is called from the data handler. The data handler is called on every base interval after

measurement collection is complete. In this example, the same write will repeat every time the data handler is

called. In a real example, the sendVal would only be called when Modbus data needs to be updated.

The completed write is shown in Figure 12.

Figure 12 - Writing 55 to Register 7 of Device 1

 Document Number Revision Prepared By Approved By
 APN0020 1.1 NGB NB

 Title Page

 Writing to Modbus Devices 9 of 10

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this docu ment. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

The function could be enhanced to facilitate writing to 8-bit and 16-bit registers. Range checking and data validation

should be implemented.

7. Conclusion
Reading from and writing to Modbus registers with a Senquip device is simple using available settings and a simple

script.

Writing to Modbus registers can be useful in configuring sensors, and in the remote control of machines. In the

figure below, the pump is remotely controlled by writing to an engine controller using a Modbus write command.

Figure 13 - Remote control and monitoring of diesel pumps by McGregor Diesel

https://mcgregordiesel.com/

 Document Number Revision Prepared By Approved By
 APN0020 1.1 NGB NB

 Title Page

 Writing to Modbus Devices 10 of 10

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this docu ment. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

Appendix 1: Source Code

load('senquip.js');

load('api_serial.js');

function sendVal(sendObj){

 let s = SQ.encode(sendObj.sadr,SQ.U8); // encode dec address into hex

 let r = SQ.encode(sendObj.radr,SQ.U16); // encode dec register number into hex

 let v = SQ.encode(sendObj.val,SQ.U16); // encode dec data into hex

 let a = s+'\x06'+r+v; // 6 is the MODBUS write unsigned 16 function code

 let c = SQ.crc(a); // use the Senquip CRC function to calculate the Modbus CRC

 c = SQ.encode(c, -SQ.U16); // encode the CRC function in hex + flip byte order

 let t = a+c; // create the final Modbus write message

 SERIAL.write(1,t,t.length); // send the message to serial port 1

}

SQ.set_data_handler(function(data) {

 sendVal({sadr:1, radr:6, val:55}); // call the send Modbus routine

}, null);

